
Physica A 502 (2018) 619–628

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Self-affinity and self-organized criticality applied to the
relationship between the economic arrangements and the
dengue fever spread in Bahia
A.S. Nascimento Filho a,*, M.L.V. Araújo a,b, J.G.V. Miranda d, T.B. Murari a,
H. Saba c, M.A. Moret a,d
a SENAI – CIMATEC – Salvador, Bahia, Brazil
b Instituto Federal de Bahia - Salvador, BA, Brazil
c Universidade do Estado da Bahia, Salvador, BA, Brazil
d Universidade Federal da Bahia, Salvador, BA, Brazil

h i g h l i g h t s

• We studied dengue fever spread in the economic regions of Bahia-Brazil.
• We studied self-affinity in a disease diffusion process.
• We compare the spread disease for different regional arrangements.
• We finding two self-affinity behavior in the time series.
• We suggest that dengue fever behavior follow a complex adaptive system.
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a b s t r a c t

In this paper, we evaluate whether the diffusion of the dengue fever can be explained by
differences among regional economies.We evaluate the dengue fever self-affinity behavior
and self-organized critical behavior within the fifteen economic regions of State of Bahia,
Brazil, between 2000 and 2009. The results showed two distinct behaviors for long-range
correlation scaling: persistent for a month and subdiffusive for one year, according to DFA
method. Furthermore, the dengue fever distribution presented power law behaviors for
these data sets, according to SOC analysis. In this study, we concluded that this disease
was not influenced by economic aspects or regional arrangement, and also suggest that
the disease’s vector (Aedes aegyptimosquito) has adapted to all the economic regions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The dengue fever is a systemic viral infection transmitted among humans by the bite of the Aedes aegypti [1]. It is themost
common andwidespread arbovirus in theworld and especially highlighted among reemerging diseases [1,2]. The substantial
vector control efforts have not stopped the rapid emergence and global spread of dengue fever; thereby, it has become an
international public health problem, according to theWorld Health Organization (WHO) [2–4]. Brazil is one of the countries
that compose theworld’s dengue fever risk area. In the State of Bahia-Brazil, the overall number increased from160 cases per
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Table 1
Dengue fever record per economic regions in Bahia-Brazil between year 2000 and 2009.

Id Symbol Economic region Quantity of cities Cases

1 RMS Região Metropolitana de Salvador 10 57,394
2 LTN Litoral Norte 20 5658
3 NDE Nordeste 46 32,942
4 PIE Piemonte da Diamantina 24 24,812
5 PGU Paraguaçu 42 36,821
6 REC Recôncavo 33 10,444
7 LTS Litoral Sul 53 57,645
8 EXS Extremo Sul 21 14,196
9 SDE Sudoeste 39 36,703
10 SGE Serra Geral 29 10,609
11 CHP Chapada Diamantina 33 8594
12 IRC Irecê 19 26,567
13 BMF Baixo Médio São Francisco 9 14,678
14 MSF Médio São Francisco 16 4914
15 OST Oeste 23 8676

Total 417 350,653

100 thousand inhabitants in 2011 to 200.9 cases per 100 thousand inhabitants in 2012 [5]. Moreover, the silent transmission
of dengue infections has been recognized, due the atypically symptomatic, even asymptomatic, in this way it is likely this
disease can spread silently and remain in a community or region without being noticed [6].

The paradigm of complexity originates from studies in a wide range of physical, biological, and social phenomena,
including diffusion problems and epidemiological spread [7]. Thus, increasing the understanding of how dengue fever
spreads is mandatory going forward, the search must focus on discovering newways of combating this disease, as proposed
by [8] that assessed the spatial and temporal pattern of dengue incidence for two cities in Taiwan; in [9,7,10,11], where
they verified the roles of transportation among cities in the dengue spread; in Ref. [12] the self affinity applied in multi-
scale analysis; in Ref. [13], they measured the existence of a spatial correlation among socioeconomic, demographic and
environmental variables in the incidence of dengue; in [14], they found that the incidence was strongly associated with the
percentages of shop-houses, brick-made houses and houses with poor garbage disposal. Thereby, if the spatial and temporal
factors for dengue cases clustering were better understood, we could prevent and control the transmission of dengue virus
more efficiently [8,7].

The relationship between health and wealth seems to be well established, in such a way that, normally, wealthy areas or
regions tend to have healthier populations than poor counterparts. At first glance that rule should be applicable formajorities
of diseases, includingdengue fever, once that onedepends just on collective efforts (e.g., coalition, education, communication,
and sanitary conditions) to stop orminimize the risks of an outbreak. Thus, the aim of this study is to evaluate the occurrence
of symmetries and correlations patterns for dengue cases in 417 cities in Bahia, Brazil, organized in fifteen economic regions,
between 2000 and 2009. In addition, we verified whether the hypothesis of economic and social arrangement significantly
influences the spread of dengue.

2. Materials and methods

In this section are presented the sets of data, climatic variables, the description of the scaling detrended fluctuation
analysis method and the definition of the self organized criticality.

2.1. Data

The first step of this work was to collect the daily records of dengue fever cases in Bahia’s cities between 2000 and 2009.
The collected data is available at the Brazilian Diseases Notification System databases from the Brazilian health ministry.
Additionally, these data were organized by clusters in the economic regions [15]. Table 1 shows the record of dengue fever
cases per economic region. In Fig. 1 is shown the map of Bahia (total area 564.732 km2), with 417 cities and their economic
region identifications (Id). The sample of original time series of dengue fever daily cases is shown in Fig. 2, where their shapes
suggest cycles of periodic outbreaks of dengue fever cases.

2.2. Climatic features

The climatic approach is normally associated with dengue fever problems. According to [1], high levels of precipitation
and temperature suitability for dengue transmission are strongly associated with elevated dengue risk.

There are 29 meteorological stations in State of Bahia. It is a low number of stations, covering less than 7% of the its
municipalities, that are not able to reach the economic region studied. This lack of data makes it difficult to analyze large
areas in this region.
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Fig. 1. Map of Bahia-Brazil (inset), economic regions division. The economic regions arrangement are characterized by diversities, e.g., in 1(RMS)- there is
a petrochemical cluster and automotive pole; in 7(LTS), 8(EXS) and 11(CHP) adventure and ecological tourism; in 13(BMF)- fruit-culture and wine industry
and; 15(OST)- agribusiness [15].

Fig. 2. Original time series of dengue fever daily cases from (a) PIE, (b) LTS and (c) REC.

It was collected daily precipitation measurements (mm) from fifteen meteorological stations inside the economic
regions, between 2000 and 2008, as showed in Table 2. We decided do not use 2009 information because there is a
lack of measurements on the data set. These data were provided by Meteorological Database for Teaching and Research
(BDMEP) [16].

In Fig. 3, we organize the average precipitation by season and meteorological station. As we can see, the average result
does not exceed 10mm for any season of the year. Bahia is located in a Brazilian region that presents low precipitation when
compared to the rest of the country. The annual total precipitation measured between 1976 and 2009 was mostly less than
1000 mm, according to U.S. department of commerce, through Physical Science Division at NOAA [17].

2.3. Detrended fluctuation analysis method

The Detrended Fluctuation Analysis method (DFA) [18] was used to assess the self-affinity properties of dengue fever
cases. The DFA method avoid false detection of correlations that are artifacts of non-stationary time series and it has been
applied to time series analyses in many areas, including the following: cloud structure analysis [19,20], fluctuation analyses
of astrophysical systems [21], sunspot [22], protein energy [23], field of seismology [24,25], transport systems [26], efficiency
in combustion processes [27], fluid dynamics [28], ion channel [29], finances [30], and blood pressure [31]. The following
steps are used for the DFA method:
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Table 2
The average precipitation by meteorological station for fifteen meteorological stations inside the economic regions between 2000 and 2008. The average
precipitation is very low for all cities.

Station name (city) Coordinates Econ.Region Average precipitation (mm)

Salvador −12.974606, −38.511435 RMS 5.13
Alagoinhas −12.137584, −38.424553 LTN 3.10
Serrinha −11.657489, −39.006739 NDE 2.21
Senhor do Bonfim −10.461947, −40.191283 PIE 2.08
Feira de Santana −12.259114, −38.956272 PGU 2.05
Cruz das Almas −12.673997, −39.102709 REC 3.20
Canavieiras −15.672663, −38.954121 LTS 4.71
Caravelas −17.733878, −39.265700 EXS 4.16
Vitória da Conquista −14.849327, −40.837372 SDE 2.17
Caitité −14.068791, −42.484159 SGE 1.75
Lençois −12.563700, −41.391978 CHP 3.23
Irecê −11.302874, −41.857971 IRC 1.70
Remanso −9.625357, −42.080921 BMF 1.68
Barra −11.091831, −43.144915 MSF 1.88
Barreiras −12.148781, −44.993107 OST 2.68

Fig. 3. The average precipitation by season and meteorological station for fifteen meteorological stations inside the economic regions between 2000 and
2008.

Consider an original time series ri , where ri is the number of cases of dengue fever at the ith day, with i = 1, . . . ,N , and
N is the total number of days registered. The time series ri is integrated to obtain

y(k) =

k∑
i=1

[ri − ⟨r⟩], (1)

where ⟨r⟩ is the average value of ri. The integrated signal y(k) is divided into non-overlapping boxes of equal length n; and
for each n − size box, y(k) is fitted using a polynomial function, which represents the trend in the box. The coordinate of
the fitting line in each box is denoted by yn(k) because a polynomial fitting of degree 1 is used and the algorithm DFA-l is
denoted; the integrated signal y(k) is detrended by subtracting the local trend yn(k) within each box (of length n);

For a given n − size box , the root-mean-square fluctuation, F (n), for the integrated and detrended signal is given as

F (n) =

√ 1
N

N∑
k=1

[y(k) − yn(k)]2, (2)

The above computation is repeated for a broad range of scales (n− sizedbox) to provide a relationship between F (n) and the
box size n.
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Table 3
Results of α exponent for fifteen economic regions, for one month and one
year and power law γ distribution of dengue fever for each economic region.
The σ represent the error of these results.

Symbol DFA results SOC results

αmonth σmonth αyear σyear γ σ

RMS 1.01 0.08 1.36 0.07 −1.99 0.10
LTN 0.75 0.09 1.32 0.06 −1.89 0.11
NDE 0.68 0.03 1.40 0.04 −1.71 0.08
PIE 0.65 0.04 1.37 0.05 −1.72 0.07
PGU 0.73 0.07 1.29 0.04 −1.88 0.08
REC 0.76 0.09 1.41 0.05 −1.61 0.09
LTS 0.77 0.08 1.25 0.07 −1.77 0.09
EXS 0.66 0.04 1.21 0.06 −1.80 0.07
SDE 0.78 0.06 1.32 0.12 −1.72 0.09
SGE 0.70 0.03 1.36 0.05 −1.64 0.08
CHP 0.78 0.05 1.11 0.05 −1.82 0.07
IRC 0.68 0.07 1.37 0.06 −1.52 0.06
BMF 0.92 0.07 1.22 0.05 −1.72 0.09
MSF 0.66 0.04 1.13 0.03 −1.83 0.10
OST 0.81 0.03 1.11 0.04 −1.79 0.07

The scaling exponent α is defined whenever such a relationship is characterized by power law F (n) ∼ nα . Therefore, the
scaling exponent α is a self-affine parameter expressing the long-range power-law correlation properties.

Moreover, the scaling exponentα allows the assessment of how the long-range correlation influences the future behavior.
The α exponent is classified as follows [27,28,22,31,32]:

1. 0.00 < α < 0.50 - anti-persistent signal;
2. α = 0.50 - white noise with no memory;
3. 0.50 < α < 1.00 - persistent signal;
4. α = 1.00 - the time series shows a noise type 1/f ;
5. 1.00 < α < 1.50, - subdiffusive process.

2.4. Self organized criticality

In the late 1980 Bak, Tang, and Wiesenfeld [33] introduced a sandpile model, in order to describe the so-called self
organized critical (SOC) phenomena, where throughout a numerical simulation in geology of a dynamical system that
imitated avalanches [34]. The authors suggested that there is a class of systems in nature that go into critical state
throughout their own dynamic evolution, as an extension of fractal geometries to thermodynamic systems in the vicinities
of instabilities [34,35].

For [34] a remarkable feature of their model is the ever-amplifying, self adjusting activation processes at all length and
time scales, where the simplest model can capture the characteristics of a vast class of spatial and temporal evolution
processes. The SOC approach is a critical state of a nonlinear energy dissipation system that is slowly and continuously
driven toward a critical value of a system-wide instability threshold, producing scale-free, fractal diffusive, and intermittent
avalanches with power law distributions [36].

3. Results

3.1. The power law analysis

In addition, the power lawwas obtained from dengue fever incidences frequency days as a function of the number of days
into all economic regions, see Table 3. The power law behavior occurs in several complex systems related to many scientific
fields and has significant consequences for understanding natural phenomena. Fig. 4 shows the distribution of dengue fever
incidence frequency as function of number of dengue fever cases in a day. Piemonte da Diamantina (PIE) curve’s shape
suggests a behavior similar to the one observed in objects that follow a self organized criticality (SOC) [33,37].

The result of SOC analysis indicates that for small number of cases, an elevated frequency of days is observed, and the
number of days with elevated number of cases are rare. This non exponential decreasing in the frequency of number of cases
per day, suggests a correlated dynamic of its elements, typical of self-organized systems [33,37]. As example the log–log
distribution observed to PIE presents Pearson ’s correlation coefficient R = −0.97, Fvalue = 562.35 and Prob > F → 0.
Moreover, the dynamics underlying this type of distribution are equivalent to high cooperative evolutionary activities [38].
In the case of dengue fever, we hypothesized that the different characteristics of economic regions could alter the dynamics
of disease diffusion in the epidemic process.



624 A.S.N. Filho et al. / Physica A 502 (2018) 619–628

Fig. 4. Dengue fever daily incidence frequency in the economic region of Piemonte da Diamantina (PIE).

Fig. 5. Samples of self-affinity study applied in dengue fever daily cases in three economic regions (PIE, LTS and REC). We recall for two distinct behavior
in the scale exponent α, the first one the αmonth depicts the persistent behavior (0.50 < αmonth < 1.00) whereas the second, 1.00 < αyear < 1.50, represent
a subdiffusive behavior.

3.2. Self-affinity analysis

The DFA method was applied in time series of dengue fever incidences in the fifteen economic regions of Bahia-Brazil to
verify the self-affinity properties of these regions. Fig. 5 shows the relationship between root-mean-square fluctuation, F (n),
and the box size n, for three economic regions (PIE, LTS and REC). It was detected that for onemonth the result of α exponent
is persistent for long-range correlations (0.50 < αmonth < 1.00), the large amount (small) of values that are likely followed
by large amounts (small). For an annual period, theα exponent varies between 1.00 < αyear < 1.50, as a subdiffusive process
(i.e., the behavior tends to be seasonal, without presenting similar epidemics from year to year). That behavior is observed
for all economic regions, as shown in Table 3.

3.3. The γ exponent distance verification

The γ exponent results is depicted in Fig. 6. The initial analysis does not allow distinguish the SOC behavior in economic
regions. To better compare the obtained γ values with each other, we calculated the difference (D) between each value and
that of RMS region which is the largest. Notable are the three groups of cluster ranges, as shown in Fig. 7. Where the first
cluster is formed by eight economic regions, its range is (0.00 < D < 0.05); the second cluster is (0.05 > D < 0.10), which
has four economic regions. We recall that the third range does not represent a cluster, scattered among (0.10 < D < 0.23).
Accordingly, we did not recognize any relationship between the difference D and the economic region, since each cluster
does not contain regions with similar economic conditions.

3.4. Randomization test analysis

Finally, the correlation properties between α exponent values and γ were verified for all 417 cities in order to verify
a potential relationship between the SOC dynamic and the long term correlation in time described by the DFA method.
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Fig. 6. The γ exponents were obtained from the fifteen economic regions for all period, where the number of class is the
√
n (i.e., size equal to 58).

Fig. 7. The distance of the γ exponent in relation to RMS economic region.

For this purpose, the randomization test [39] was applied, by using the Spearman correlation coefficient with 100,000
randomizations of the data. This method confirms the existence of a pattern in the original data, since under the null
hypothesis, all possible data orders have an equal chance to occur [39].

A comparison between the distribution of correlation values found for randomizations and correlation of the original
data is shown in Fig. 8. The result of the αyear and γ presented a ρ equal to −0.215702. That value is outside the distribution,
so that we can reject the null hypothesis. According to the Ref. [39], we can confirm a correlated relationship between αyear
exponent and γ exponent (i.e., that does not occur by chance). See Figs. 9 and 10.

On the other hand, the relationship between αmonth and γ , suggests that their relation happened by chance. As well as for
αmonth and αyear . For both randomization tests were obtained the ρ equal to 0.125194 and −0.113823, respectively. As the
result of these was inside the distribution area, we can accept the null hypothesis for them (i.e., they occur by chance).

4. Discussions

The economic regions are diversified, e.g., with universities covering all regions, extensive highways connecting all
regions, three harbors, two international airports, among other important economic activities as well as public equipment.
At first glance, all these capacities could offer materials, financial resources and conditions to fight against the disease
propagation. However, this is not observed, and the disease spreads across all economic regions, as showed in Table 1.
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Fig. 8. The randomization test between αyear exponent and γ exponent shows that they are negatively correlated. Thus, wemust reject the null hypothesis,
since that Spearman correlation (ρ is equal to −0.215702) is outside of the distribution area (randomized data).

Fig. 9. The randomization test between αmonth exponent and γ exponent shows that they are not correlated (i.e., the relation between αmonth exponent and
γ exponent occur by chance). Thus, we must accept the null hypothesis, since that Spearman correlation (ρ is equal to 0.125194) is inside the distribution
area (randomized data).

In general, dengue spread is directly associatedwith high levels of precipitation and temperature suitability, although, low
precipitation values do not limit the transmission of dengue [1]. According to Fig. 3, Bahia presents low levels of precipitation.
On the other hand, greater risk of dengue spread is also linked to the proximity to low-income urban and peri-urban centers,
mainly in highly connected areas, bringing the idea that human movement between population centers is an important
facilitator of dengue spread [1,7,9,11]. Besides, the diffusion process of dengue reflects the continuous existence of several
series of transmission chains, including the spatial and temporal distribution. Where the dengue spread can be explained
by the movement of either infected mosquitoes or infected people through a region, area, even neighborhood [7,8,11,13].
Nevertheless, in Bahia does not seem any correlation with economic factors.

4.1. Complexity analysis and implications

The results show that the distribution of the number of cases per day over 9 years follows a power-law behavior in the 15
economic regions studied. This is a characteristic of SOC dynamics [33,37]. Thereby, suggesting that an addition of new cases
is similar to the effect of an avalanche, where these avalanches are equivalent to high cooperative evolutionary activities, so
that leading to the expansion of the epidemic process among economic regions.
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Fig. 10. The randomization test between αmonth exponent and αyearexponent shows that they are not correlated (i.e., the relation between αmonth exponent
and αyear exponent occur by chance). Thus, we must accept the null hypothesis, since that Spearman correlation (ρ is equal to −0.113823) is inside the
distribution area (randomized data).

Besides, the γ difference (0.00 < D < 0.25) did not express relation between economic regions, with no direct
relationship with the individual properties of each economic region’s cluster is provided, so that it was not possible to
recognize similarity in economic regions in the same cluster. In the self-affinity analysis two distinct behaviors were found
in time. The first one, a persistent behavior (0.50 < αmonth < 1.00), where there are long-range correlations for all economic
regions, i.e., large (small) fluctuations tend to remain in the future. The second one, the subdiffusive process (1.00 <
αyear < 1.50), a state for large time, characterized by nonstationary signals and abrupt changes, which makes prediction
difficult [31,27,12,28]. And also, the relationship between SOC and the DFA method was verified. The randomization tests
were performed and it detected the existence of a significant relation between high cooperative evolutionary activities
(avalanches) and the behavior that tends to be seasonal, without presenting similar epidemics from year to year (αyear ),
once γ and αmonth as well as for αyear and αmonth happened by chance, according to the randomization test.

4.2. Conclusions and perspectives

The dengue fever transmission dynamic in the economic regions is similar among them,which suggests a similar dynamic
underlying the diffusion process of the disease throughout the regions. It increases the risk of major epidemics, since
regardless of its origin, it would propagate with the same dynamics across all regions. The dengue fever virus has the
evolution capacity to create a challenge for the human immunity system, where it faces a complicated task, leading to four
categories of dengue fever virus serotypes (DEN 1, DEN 2, DEN 3 and DEN 4) identified [4], it is a difficult battle for public
authorities. Although dengue fever is treated as an aggregated system (economic regions), and our results show these regions
resemble themselves, as a single system, with the capacity to produce an emergent property, that is, collective responses
like a complex adaptive system [38].

The diffusion, therefore, cannot be explained by the clusters. So the hypothesis that economy features can affect the
dengue fever diffusion in this region was rejected. The dengue fever spread was neither influenced by economic aspects
nor by regional arrangements. The disease seems to reach critical state as a process of natural evolution, without any
intervention, changes in sensitivity, parameter settings, or changes in the initial configuration. However, the dengue fever
could be spread for all these regions, with potential to create large-scale epidemic clusters. This observation corroborates
that Aedes aegypti has a great capability to adapt to different habitats, both in nature and urban environments, where the
Aedes aegypti does not have natural predators.

For a future research, an investigation on the correlation between spatio-temporal and dengue fever virus serotypes.
Since we believe it is necessary to enlarge that kind of research due to the adaptive capability of the Aedes aegypti. As the
possibilities of new outbreaks in Brazil are real, to explore others computational approach are always welcome, e.g., cross
correlation approach and neural artificial network, both applied to the dengue fever spread.
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